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Bond percolation on subsets of the square lattice, and the 
threshold between one-dimensional and two-dimensional 
behaviour 
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School of Mathematics, University of Bristol, University Walk, Bristol BS8 l T W ,  UK 

Received 2 July 1982, in final form 23 September 1982 

Abstract. For each value of i~ E [i, 11, we construct a subgraph R ( T )  of the square lattice 
Z2 such that the bond percolation process on R ( n )  has critical probability i ~ .  We show 
that the critical probability n ( a )  of the region {(x, y ) :  0 S y S a In(x + l),  0 x <a} 
depends in a non-trivial way upon the choice of the number a ;  r i a )  is a continuous, 
decreasing function of a and satisfies n ( a ) + i  as a +CO and n ( a ) +  1 as a J 0 .  We also 
construct a family of 'one-dimensional' bond percolation processes, whose critical prob- 
abilities range over the interval (0, 1). All proofs are rigorous. 

Let G be an infinite graph and let r(G) be the critical probability of the bond 
percolation process on G. There is a small collection of graphs G for which r(G) is 
known exactly. Here are two examples. The critical probability of a regular branching 
tree of degree k + 1 equals k-'; the critical probability of the square lattice H 2  equals 
3. In a recent paper, van den Berg (1982) posed the following question: is it true that 
for every prescribed r E [0,1] there exists a graph G with critical probability r? He 
has answered this question in the affirmative, but for no value of r ( a  (0, i, 1)) was he 
able to construct explicitly the corresponding graph G. He used a probabilistic method 
which is based upon the following observation. Consider bond percolation on the 
square lattice Z2, each edge of which is declared open (respectively closed) with 
probability p (respectively q = 1 - p ) .  If p > $, then there exists almost surely (AS) an 
infinite open cluster; this cluster is a random subgraph of 2' and has critical probability 
(2p)-'. Hence the class of subgraphs of Z2 with critical probability ( 2 ~ ) ~ '  is not empty 
for any p satisfying $ < p  1. It is the purpose of this paper to indicate that an 
alternative analytical approach yields explicit constructions of subgraphs of 2' with 
critical probabilities ranging over the interval [i, 11. 

Consider bond percolation on Z2, in which each edge is open with probability p ; 
we write P , ( A )  for the probability of an event A.  Let f: [0, CO) + [0, CO) be a function 
on the interval from zero to infinity, taking non-negative values, and define H 2 ( f )  to 
be the region of H 2  which is bounded by the lines y = f ( x )  and y = 0; thus 

1 

Let I(f, CO) be the event that H 2 ( f )  contains an infinite open cluster; I(f, CO) is in the 
trivial tail a-field of a collection of independent Bernoulli random variables (see 
Grimmett and Stirzaker 1982, pp 21, 29), and so P,(I(f, CO)) equals either 0 or 1 
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(Grimmett and Stirzaker 1982, p 190). The critical probability .rr(Z2(f)) is defined as 

7r(Z2( f ) )  = s u p b :  P,(Z(f, CO)) = 0). 
7~ is the unique number with the property that if p > .rr then there exists (AS) an infinite 
open cluster in that part of the (x ,  y )  plane bounded by the x axis and the line y =f(x) ,  
whilst if p < .rr then (AS) no such cluster exists. We shall prove the following theorem. 

Theorem. If f ( x )  = a ln(x + 1) where 0 < a  <CO then the critical probability ~ ( a )  of 
Z2(f) is a function T :  (0, CO) + (i, 1) with the properties 

(1) ~ ( a )  is a continuous function of a 

~ ( a )  is a strictly decreasing function of a 

.rr(a)tl as aJ0,  and .rr(a)li as UTCO.  

This theorem has the following immediate consequences. 
(i) For any .rr E (t, l ) ,  there exists a E (0, CO) such that the region of 2’ between 

the lines y = a ln(x + 1) and y = 0 has critical probability T.  

(ii) I f f :  [0, CO) + [0, CO) andf(x)/ln x + 0 as x + CO then H 2 ( f )  has critical probability 
1. Roughly speaking, such regions behave as one-dimensional regions. 

(iii) If f:[O, CO) + [O,W) andf(x)/ln x + 00 as x + CO then Z2(f) has critical probabil- 
ity 4. Roughly speaking, such regions behave as the whole lattice H 2 .  

(iv) The device of van den Berg (1982) may be applied to construct graphs with 
critical probabilities ranging over the interval (0, 11; this involves replacing each edge 
of 2’ by some fixed number, m say, of parallel edges. 

The theorem is proved by refinements of the methods of Grimmett (1981). The 
choice of the square lattice as the underlying graph is convenient, since at least as 
much is known about this lattice as about any other non-trivial lattice, but similar 
methods should be valid for any two-dimensional lattice. 

The above argument provides a truly two-dimensional construction of graphs with 
prescribed critical probabilities. Before proving the theorem, we indicate a simple 
way of constructing ‘one-dimensional’ graphs with prescribed critical probabilities. 
Fix . r r ~ [ O ,  11, and let G(.rr) be the graph defined as follows. The vertices of G ( T )  
are labelled 1 , 2 , .  . . ; the edges of G ( T )  are such that vertices k and j are adjacent 
if and only if Ik - j l =  1, and for each k 2 2 ,  vertices k - 1 and k are joined by b(k)  
edges in parallel, where 

i f . r r = O  i: i fa=1 
b ( k )  = int(c(k)) i f O < . r r < l  

and 

Here, int(x) denotes the integer part of x. It is an easy exercise to verify that G ( T )  
has critical probability T .  

Proof of the theorem. A path in Z2 is an alternating sequence {UO, eo, U I ,  . . . . , e,,, u,+I} 
of vertices and edges such that ei  joins ui to u i + l  (for each i )  and ui # uj  if i Zj. A path 
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is called open (respectively closed) if all its edges are open (respectively closed). 
Suppose that $< p = 1 -q  < 1, so that 0 <q < i. 

Let L k  be the line x = k in Z2, and let & ( k )  be given by 

& ( k )  = P ( 0  is joined to a vertex on L k  by a closed path contained 

in COk, except for the first vertex), 

where 0 is the origin of 2’ and 

c,,,, ={(x, Y)EZ’:  m < x  s n } .  

We recall some results from Grimmett (1981). There exists a number a,  such that 
O<a, <CO and 

k - ’  In p , ( k )  + - aq as k + 03. (4) 
Furthermore if f (x)  = a ln(x + 1) and p + q = 1 then 

In order to prove the theorem, it is sufficient to show that a,  is a continuous, strictly 
decreasing function of q (and therefore a continuous, strictly increasing function of 
p = 1-9) which maps (0, i) into (0, CO), and that 

a,  + 03 as q J 0  and a,  + o as qTi. (6)  

To see that this is sufficient, suppose that it holds and define Y to be the inverse 
function of aq: v is given uniquely by 

a ” ( x )  = x 
and is a continuous, strictly decreasing function which maps (0,oo) onto (0, $). It is 
an immediate consequence of ( 5 )  that 

r ( a )  = 1 - v(a-’). 

The remainder of the proof is devoted to proving the above remarks about a,. It is 
divided into three lemmas. 

Lemma I. aq is a continuous function of q on (0,;). 

Proof. In Grimmett (1981), it was shown that a,  is a lower semicontinuous function 
of q ;  this followed from the fact that a,  is the limit of a superadditive sequence of 
continuous functions of q, and thus may be approximated from below, to any prescribed 
degree of accuracy, by a continuous function. To show upper semicontinuity, we 
observe first that 

Pq(r + S I  W h i P , ( s )  for r, s 2 1. (7) 

To see this, we order the vertices on the line x = k in some fixed manner ul, U’, . . . and 
define 

K = min{k : 0 is joined to U k  by a closed path contained in COk, 

except for the first vertex} 
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with the convention that K = CO if no such path exists. Then 

&(r + s )  3 f P(K = k,  and U k  is joined to L,,, by a closed path in 
k = l  

C,,,,, except for the first vertex) 
m 

= c P(K = k ) P q ( s )  by independence 
k = l  

= Pq(r)Pq(s) .  

By the theory of subadditive functions, the limit aq associated with the subadditive 
sequence {-ln & ( k ) :  k = 1 , 2 , ,  . . } satisfies 

aq = inf - k-' In & ( k ) ) .  
k i 

Thus aq may be approximated from above, to any prescribed degree of accuracy, by 
one of the family {- k-' In P , ( k ) :  k = 1 , 2 , .  , , }, and we need only to verify that P , ( k )  
is continuous for each k .  To see this, note that 

Pq (k, P q ( k )  Pq(k, n) + yq(n)  

where P , ( k ,  n )  is the probability that 0 is joined to LK by a closed path in C 0 k  

containing fewer than n edges, and y,(n)  is the probability that there exists a closed 
path starting from 0 with n or more edges. But y,(n)LO as n +a, since q s i ;  by 
Dini's theorem , we have that y,(n)  + 0 uniformly on q E [0, 31. Therefore P , ( k ,  n )  + 
& ( k )  as n +CO,  uniformly on [0, t ] ;  but Pq(k ,  n) is continuous in q, giving that & ( k )  
is continuous in 4 on (0, t ) .  The proof of lemma 1 is now complete. Similar arguments 
may be used to show that the function rP of Grimmett (1981) is continuous on (0, i). 
L e m m a  2. aq is a strictly decreasing function of q on (0,i). 

Proof. Let 0 < U < t' < 1. It is clear that a ,  2 aL. We construct both the percolation 
processes (with edge-probabilities U and U )  on the same probability space in the 
following way. With each edge e we associate two independent Bernoulli random 
variables X ( e )  and Y ( e ) ,  each of which may take the value 0 or 1, such that 

P(X(e) = 1) = t' P (  Y ( e )  = 1) = U/V. 

We colour e black if X ( e )  = 0, white if X ( e ) Y ( e )  = 1, and grey otherwise; we call e 
Light if it is either white or grey. The white edges constitute a percolation process 
with edge-probability U and the light edges constitute a process with edge-probability 
U .  Let V be the collection of edges in the light cluster which contains the origin 0 
of Z2. It is a consequence of theorem 1 of Kesten (1981) that there exist constants 
c l ,  c 2  > 0 such that 

P ( I V l > k ) s c l  exp(-c2k) for all k .  (8) 

F = l - ( u / t ' )  

Let M be a positive constant, to be chosen shortly, and write 

as the probability that a light edge is not white; note that F > O .  For each k = 
1 , 2 ,  . . . , let 8 ( k )  be the collection of edges of Z2 which join two vertices of the form 
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(k - 1, y )  and (k, y ) ,  for y = 0, *l, , , . ; let N ( k )  be the number of edges in 8 ( k )  which 
have the property of belonging to a light path beginning at 0 and lying entirely within 
Corn except for its first vertex, and write N ( k )  for the random k-vector 
(N(l) ,  . . . , N ( k ) ) .  Let w k  be the event that 0 is joined to L k  by a white path contained 
in C O k ,  except for its first vertex. Clearly, if n(k) = ( n ( l ) ,  . . . , n ( k ) ) ,  then 

P( w k I N ( k )  = n  ( k ) )  (1 - F n c l ) ) ( l  - &  n'2))  . . (1 - &  n ' k ) )  

since each of the light edges contributing to N ( i )  is not white with probability E .  Now, 

@u(k) = P( w k )  = 1 P ( W k \ N ( k )  = n (k ) ) P ( N ( k )  = (k)) 
n ( k )  

where the sum is over all k-vectors n(k) with non-zero entries. We divide the sum 
into two parts, depending on whether Xi n (i) S M k  or X i  n (i) >Mk,  to obtain from 
(9) that 

By the arithmetic/geometric mean inequality, 

pu (k) G C exp(-ke M ) ~ ( ~ ( k )  = n (k)) + ~ ( 1  V /  > ~ k )  
n Z , n l i l r M k  

s exp(-ke")p,(k)+cl exp(-c2Mk) 

from (8). Choose M to be large enough so that 

c ~ M > E ~ + ~ c x ,  

to deduce from (4) that 

~ ~ ( k ) c 2 p , ( k )  exp(-ke") for all large k 

and combine this with (4) to see that 
M 

ff,BCY,f& . 
The proof of lemma 2 is now complete. 

Lemma 3. aq + 00 as 4JO, and aq + 0 as 4 t t .  

Proof. The first limit follows from the fact that 

P q ( k ) c 7 ' q ( k ) s 4  K 
k k + o ( k l  

where K is the connective constant of Zz, giving that 

aq 3 - l n ( ~ 4 )  + 00 as 4JO. 

Finally, note that the proof of lemma 1 may be extended to show that aq is upper 
semicontinuous on (0, $1; it follows that aq is left-continuous at q = 1, and the second 
limit follows from the observation (Grimmett 1981) that al12 = 0. This proves lemma 
3 and completes the proof of the theorem. 



604 G R Grimmett 

References 

van den Berg J 1982 J. Phys. A: Math. Gen. 15 605-10 
Grimmett G R 1981 Ado.  App l .  Probability 13 314-24 
Grimmett G R and Stirzaker D R 1982 Probability and Random Processes (Oxford: Clarendon) 
Kesten H 1981 J. Stat. Phys. 25 717-56 


